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Parametric Stability Analysis of a Thin Shell 

Structure Under Own Weight 

Tamirat Kebede 

Abstract: In this study, the internal forces, parametric stability 

and free vibration of elliptic parabolic shell analysis are performed 

by theoretical and finite element methods. Geometrical and 

material linearity is considered in modeling and analysis of the 

structure. Theoretical analysis is done by shallow shell theory and 

the finite element analysis is carried out by using DLUBAL RFEM 

5.3.1. Theoretical formulas in this study are coded by the 

MATLAB program. The parameter considered thickness, 

dimension, radius of curvature, modulus of elasticity and side 

height of the shell for determining the critical buckling load and 

thickness for free vibration. The internal forces, displacement, 

critical buckling load and free vibration analysis of result in the 

study presented graphically and discussed in detail. The result of 

the finite element analysis is then compared with the theoretical 

analysis results.  

    Keywords: Elliptic Parabolic Shell, Parametric Stability, Free 

Vibration Analysis, Theoretical Analysis, DLUBAL RFEM 

Analysis, MATLAB program. 

I. INTRODUCTION 

  Reinforced concrete thin shells can be defined as curved 

slabs whose thicknesses are small compared to their other 

dimensions like the radius of curvature. Due to its initial 

curvature, a shell can transfer an applied load by in-plane as 

well as out-of-plane actions. A thin shell subjected to an 

applied load, therefore, produces mainly in-plane actions, 

which are called membrane forces. These membrane forces 

are resultants of normal stresses and in-plane shear stresses 

that are uniformly distributed across the thickness.   

Deformable bodies may become unstable under certain 

loading conditions and thus have a premature failure. The 

phenomenon of instability is particularly important for thin 

shells subjected to compressive forces. Critical buckling load 

and free vibration of cylindrical and some other shells were 

studied extensively by many researchers, very less work was 

carried out on the buckling and free vibration characteristics 

of doubly curved shells. The study of buckling and free 

vibration behavior of doubly curved elliptic paraboloid, 

hyperbolic paraboloid, conidial and hypar shells is yet to be 

carried out. Generally, to determine the stability of shells is 

the main concern for the design of the reinforced concrete 

shell structures now a day.  
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The present work is, therefore, expected to investigate the 

critical buckling and the free vibration behavior of the elliptic 

paraboloid shell by employing the theoretical and finite 

element method. The finite element software RFEM is used 

for modeling and analysis of thin elliptic paraboloid shell [1]. 

For theoretical analysis of the thin shell  MATLAB R2019b 

[2] is essential in this research. 

II. MATERIAL 

For this study C20/25, C40/45 and C60/75 concrete types [3] 

are taken for the determination of critical buckling load. For 

the analysis of internal forces and free vibration structural 

concrete C20/25 with a young’s modulus of 30 GPa, poisson's 

ratio of 0.2 and a unit weight of 25 kN/m3 were used. The 

partial safety factors for all the reinforced concrete resistance 

were taken as γm=1. 

III. GEOMETRY 

The geometrical property and the procedures followed in the 

theoretical and numerical analysis of each modeled shell is 

described in a sample solved problem. T. Nagy [4] 

considered geometric details of the elliptic curve generator, 

which is a Positive Gaussian curvature. 

 

Figure 1. Elliptic paraboloid shell geometry (T. Nagy 

1976) 

The general equation for elliptic paraboloid shell according 

to T. Nagay 
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Figure 2. Elliptic paraboloid shell model by RFEM 

IV. THEORY OF SHALLOW SHELLS 

A shallow shell is defined as a shell having a relatively small 

raise as compared to its spans. A shell is said to be shallow if 

at any point of its middle surface the following inequalities 

hold: 
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where z = z (x, y) represents the equation of the shell middle 

surface. 

The theory of shallow shells can be also used to analyze shells 

that become locally shallow when the original shell is divided 

into finite segments or elements [5]. If confine the analysis to 

the accuracy of the theory of thin shells, i.e., consider a shell 

as shallow for     
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The DMV (Donnell–Mushtari–Vlasov) theory can be useful 

to the analysis of generally shallow shells form. Thus, the 

system of the governing differential equations of the 

estimated DMV theory of thin shells have the following form: 
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Determined the internal forces and moments by shallow shell 

theory. 
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V. STABILITY ANALYSIS 

The stability of any deformable bodies that may become 

unstable under certain loading conditions and thus have a 

premature failure. The phenomenon of instability is 

particularly important for thin shells subjected to compressive 

forces. The design of thin shells is normally dominated by the 

stability considerations and not merely the material strength 

requirements. Hence, the stability analysis of thin shells 

acquires prime importance in various problems related to the 

design of shells [6]. 

    The theoretical buckling load for a doubly curved elastic 

shell under the dead load, is 
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used in this research paper for the determination of critical 

pressure 
crp for an elliptical paraboloid shell. 

VI. FREE VIBRATION 

The governing differential equations of free vibrations of 

shallow shells. 
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The natural frequency of free vibrations of a shallow shell for 

the simply supported shell of double curvature. 
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Free vibration of simply supported doubly curved shell is 

analyzed by [7] 
2

2 2

2 2

2 2

1 1

y x

mnc mnf

m n

a bR R E

m n

a b

 

 
 

    
+    

       = +  
      

+    
     

……..9 

where
2
mnf is the equivalent frequency for the flat plate 
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VII. PARAMETRIC STUDY 

The impact of thickness, the radius of curvature, rise of 

curvature in x and y direction and the dimension of elliptic 

parabolic in terms of the square and rectangular plan in 

critical buckling of the load. and also the influence of 

thickness on natural vibration of the shell by its weight. For 

the analysis of buckling load and natural vibration simply 

supported boundary condition is considered. 
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Table 1. Geometrical Parameter for Models 

Description Symbols Values(m) 

The thickness of the shell h 0.050 - 0.150 

Rise of the shell in the x-direction f1 or fx 0.500 - 0.800 

Rise of the shell in the y-direction f2 or fy 0.500 

The dimension of the shell in the x-direction a 5.000 

The dimension of the shell in the y-direction b 4.000 and 5.000 

The radius of curvature in rectangular plan Elliptic paraboloid 

shell x-direction R1 or Rx 15.625 and 17.857 

The radius of curvature in rectangular plan Elliptic paraboloid 

shell y-direction R2 or Ry 16.000 

The radius of curvature in square plan elliptic Paraboloid shell 

x-direction R1 or Rx 15.625  -  25.000 

The radius of curvature in square plan elliptic Paraboloid shell 

y-direction R2 or Ry 15.625  -  25.000 

VIII. ANALYSIS RESULT 

Table 2. Theoretical and RFEM result (a=5m, b=5m, f1=0.5m, f2=0.5m for C20/25) 

     Computing by table Computing by RFEM 

x/a y/b x (m) y (m) K Nx (kN/m) Ny (kN/m) Nx (kN/m) Ny (kN/m) 

1.000 0.000 -5.000 0.000 1.020 0.000 -61.286 -0.293 -0.059 

0.750 0.000 -3.750 0.000 1.011 -12.766 -49.323 -13.518 -38.404 

0.500 0.000 -2.500 0.000 1.005 -22.863 -39.553 -23.970 -43.640 

0.250 0.000 -1.250 0.000 1.001 -29.161 -33.333 -30.349 -36.382 

0.000 0.000 0.000 0.000 1.000 -31.250 -31.250 -32.519 -32.520 

0.250 0.000 1.250 0.000 1.001 -29.161 -33.333 -30.566 -36.023 

0.500 0.000 2.500 0.000 1.005 -22.863 -39.553 -24.418 -43.370 

0.750 0.000 3.750 0.000 1.011 -12.766 -49.323 -14.161 -39.412 

1.000 0.000 5.000 0.000 1.020 0.000 -61.286 -0.293 -0.059 

0.000 1.000 0.000 -5.000 0.981 -61.286 0.000 -0.059 -0.293 

0.000 0.750 0.000 -3.750 0.989 -49.323 -12.766 -38.404 -13.518 

0.000 0.500 0.000 -2.500 0.995 -39.553 -22.863 -43.640 -23.970 

0.000 0.250 0.000 -1.250 0.999 -33.333 -29.161 -36.382 -30.349 

0.000 0.000 0.000 0.000 1.000 -31.250 -31.250 -32.520 -32.519 

0.000 0.250 0.000 1.250 0.999 -33.333 -29.161 -36.023 -30.566 

0.000 0.500 0.000 2.500 0.995 -39.553 -22.863 -43.370 -24.418 

0.000 0.750 0.000 3.750 0.989 -49.323 -12.766 -39.412 -14.161 

0.000 1.000 0.000 5.000 0.981 -61.286 0.000 -0.059 -0.293 
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Figure 3. Internal Force Diagram in The Central Section of the Shell 

Table 3. Internal Force and Moment Analysis Result (a=5m, b=5m, f1=0.5m, f2=0.5m for C20/25) 

  Computing by (DMV) theory Computing by RFEM 

x y Nx Ny Mx My Nx Ny Mx My 

0.000 5.000 0.000 0.000 0.000 0.000 -0.293 -0.059 0.000 0.012 

1.250 5.000 -13.346 -38.360 0.565 0.096 -13.518 -38.404 0.573 0.085 

2.500 5.000 -23.947 -43.394 0.204 0.008 -23.970 -43.640 0.215 0.003 

3.750 5.000 -30.421 -36.205 -0.012 -0.046 -30.349 -36.382 -0.009 -0.047 

5.000 5.000 -32.558 -32.558 -0.059 -0.059 -32.519 -32.520 -0.059 -0.059 

6.250 5.000 -30.421 -36.205 -0.012 -0.046 -30.566 -36.023 -0.014 -0.049 

7.500 5.000 -23.947 -43.394 0.204 0.008 -24.418 -43.370 0.197 -0.001 

8.750 5.000 -13.346 -38.360 0.565 0.096 -14.161 -39.412 0.568 0.082 

10.000 5.000 0.000 0.000 0.000 0.000 -0.293 -0.059 0.000 0.012 

5.000 0.000 0.000 0.000 0.000 0.000 -0.059 -0.293 0.012 0.000 

5.000 1.250 -38.360 -13.346 0.096 0.565 -38.404 -13.518 0.085 0.573 

5.000 2.500 -43.394 -23.947 0.008 0.204 -43.640 -23.970 0.003 0.215 

5.000 3.750 -36.205 -30.421 -0.046 -0.012 -36.382 -30.349 -0.047 -0.009 

5.000 5.000 -32.558 -32.558 -0.059 -0.059 -32.520 -32.519 -0.059 -0.059 

5.000 6.250 -36.205 -30.421 -0.046 -0.012 -36.023 -30.566 -0.049 -0.014 

5.000 7.500 -43.394 -23.947 0.008 0.204 -43.370 -24.418 -0.001 0.197 

5.000 8.750 -38.360 -13.346 0.096 0.565 -39.412 -14.161 0.082 0.568 

5.000 10.000 0.000 0.000 0.000 0.000 -0.059 -0.293 0.012 0.000 

Table 4. Deformation in the central section of a square elliptic parabolic shell 

 
DMV RFEM 

x u (mm) u (mm) 

-5.000 0.000 0.072 

-3.750 0.431 0.439 

-2.500 0.561 0.577 

-1.250 0.555 0.574 

0.000 0.543 0.561 

1.250 0.555 0.574 

2.500 0.561 0.577 

3.750 0.431 0.439 

5.000 0.000 0.072 
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Figure 4. Deformation in the Central Section x and y-Direction 

IX. CRITICAL BUCKLING LOAD   

The percentile variation of the value of the critical buckling load of the shell that is done by theoretically and numerically is 

increased when the shallowness of the shell is increased in square plan elliptic parabolic shell with the thickness of the shell is 

(5 – 15cm) this is seen in the graph. The term shallowness means the side raise of the elliptic paraboloid shells. 

       The relation between buckling load and radius of curvature of the shell is inversely this is clearly shown in the result that 

gained by both analysis methods. When the radius of curvature decreased from 25m to 15.625m in the opposite way the critical 

buckling load increased 139.320 to 334.245 kN/m2. 

Figure 5 Critical Buckling Load by RFEM & DMV 

Table 5. Critical Load with Parameters (a=b=5.0m, f1=f2=0.5m and R1=R2=25.0m) 

Concrete 

Type 
C20/25 C40/50 C60/75 

Thickness (m) Pcr RFEM Pcr (kN/m2) Pcr RFEM Pcr (kN/m2) Pcr RFEM Pcr (kN/m2) Difference in % 

0.050 139.320 141.421 162.540 164.992 181.116 183.848 -1.486 

0.060 201.938 203.647 235.594 237.588 262.519 264.741 -0.839 

0.070 276.426 277.186 322.497 323.384 359.354 360.342 -0.274 

0.080 360.722 362.039 420.842 422.378 468.939 470.650 -0.364 

0.090 457.000 458.205 533.167 534.573 594.100 595.667 -0.263 

0.100 570.418 565.685 665.488 659.966 741.543 735.391 0.837 

0.110 701.689 684.479 818.637 798.559 912.196 889.823 2.514 

0.120 825.676 814.587 963.289 950.352 1073.379 1058.963 1.361 

0.130 958.761 956.008 1118.555 1115.343 1246.389 1242.811 0.288 

0.140 1105.987 1108.743 1290.318 1293.534 1437.783 1441.366 -0.249 

0.150 1268.845 1272.792 1480.319 1484.924 1649.499 1654.630 -0.310 
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Figure 6. Mode shape with corresponding critical load (a=b=5.0m, f1=f2=0.5m, t=0.1m and R1=R2=25.0m) 

In general, the shallowness, the radius of curvature, type of concrete and thickness of the shell has a significant 

impact on the critical buckling load of the shell. 

X. FREE VIBRATION ANALYSIS 

The natural vibration cases tab is the centerpiece of the RF-DYNAM Pro - natural vibrations module. It is essential for the 

response spectrum analysis and the time history analysis based on modal decomposition (modal analysis) [8]. 

The equation of motion of a multi-degree of freedom without damping is solved with the four available eigenvalue solvers. 

The equation of motion is defined as 

..
0M u Ku+ =  

where M is the mass matrix, K is the stiffness matrix and u are he mode shapes containing translational and rotational parts: 

( ), , , , ,
T

x y z x y z
u uu u   =  

The eigenvalue 𝜆 [1/s2] is connected to the angular frequency 𝜔 [1/s] with 𝜆i = 𝜔i2. The natural frequency f [Hz] is then 

derived with f = 𝜔 /2𝜋, and the natural period t [s] is the reciprocal of the frequency obtained with t = 1/f.

Table 6. Mode result by theoretical and RFEM (a=b=5.0m, f1=f2=0.5m and R1=R2=25.0m) 

C20/25 

Thick 

ness(m) 
D (N.m) 

Theoretical result RFEM result 

ω (rad/s) f (Hz) t (s) ω (rad/s) f (Hz) t (s) 

0.050 325520.833 138.930 22.111 0.045 145.812 23.207 0.043 

0.060 562500.000 139.090 22.137 0.045 148.886 23.696 0.042 

0.070 893229.167 139.280 22.167 0.045 152.302 24.240 0.041 

0.080 1333333.333 139.498 22.202 0.045 154.954 24.662 0.041 

0.090 1898437.500 139.745 22.241 0.045 156.733 24.945 0.040 

0.100 2604166.667 140.021 22.285 0.045 158.522 25.230 0.040 

0.110 3466145.833 140.325 22.333 0.045 160.357 25.522 0.039 

0.120 4500000.000 140.657 22.386 0.045 162.260 25.824 0.039 

0.130 5721354.167 141.017 22.444 0.045 164.244 26.140 0.038 

0.140 7145833.333 141.405 22.505 0.044 166.316 26.470 0.038 

0.150 8789062.500 141.821 22.572 0.044 168.480 26.814 0.037 
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XI. CONCLUSION 

Modeling and analyzing of the shell by RFEM finite element 

software that helps me to determine the internal forces, 

critical buckling loads and free vibration. The results gained 

from this software also good resemble the theoretical results 

except for the free vibration. Results demonstrate that the 

theoretical result does not necessarily give the same solution 

to the finite element analysis. It has been speculated that this 

might be due to assumptions during drive a theoretical 

formula. From this, it has decided that this study required 

experimental work. 
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